Two-stage design method for realization of photonic bandgap structures with desired symmetries by interference lithography.

نویسندگان

  • Xianyu Ao
  • Sailing He
چکیده

Interference lithography for the fabrication of photonic crystals is considered. A two-stage design method for realization of photonic bandgap structures with desired symmetries is developed. An optimal photonic crystal with a large bandgap is searched by adjusting some parameters while keeping some basic symmetry of the unit cell unchanged. A nonlinear programming method is then used to find the optimal electric field vectors of the laser beams and realize the desired interference pattern. The present method is useful for a rational and systematical design of new photonic bandgap structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect in 2D Photonic Crystal

This paper deals with the design and simulation of all-optical 4×2 encoderusing the wave interference effect in photonic crystals. By producing 4 opticalwaveguides as input and two waveguides as output, the given structure was designed.The size of the designed structure is 133.9 μm2. The given all-optical encoder has acontrast ratio of 13.2 dB, the response time of 0.45 ...

متن کامل

Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.

This paper demonstrates an approach for laser holographic patterning of three-dimensional photonic lattice structures using a single diffractive optical element. The diffractive optical element is fabricated by recording gratings in a photosensitive polymer using a two-beam interference method and has four diffraction gratings oriented with four-fold symmetry around a central opening. Four firs...

متن کامل

A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication

Through the use of a multi-layer phase mask to produce fivebeam interference, three-dimensional photonic crystals can be formed through single exposure to a photoresist. In these holographically formed structures, the interconnectivity is controlled by the relative phase difference among contributing beams. Photonic band gaps are calculated and the simulation shows a maximum bandgap of 18% of t...

متن کامل

Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element

In this paper, we have systematically studied the holographic fabrication of three-dimensional (3D) structures using a single 3D printed reflective optical element (ROE), taking advantage of the ease of design and 3D printing of the ROE. The reflective surface was setup at non-Brewster angles to reflect both sand p-polarized beams for the interference. The wide selection of reflective surface m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2004